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Path-integral analysis of scalar wave propagation in multiple-scattering random media
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In this work we consider the general problem of scalar wave propagation in a continuously inhomogeneous
random medium, applying the approach originally proposed by Fock for the integration of quantum-
mechanical equations. The principal idea of the method is based on the introduction of an additional
pseudotime variable and the transfer to a higher-dimensional space, in which the propagation process is
described by the generalized parabolic equation similar to the nonstationand®garequation in quantum
mechanics. We present its solution in a form of Feynman path integral, the asymptotic evaluation of which in
the far field allows us to estimate the so-called wave correction terms. These corrections are related to coherent
backscattering and repeated multiple-scattering events on the same inhomogeneities, i.e., to the phenomena that
are not described in the framework of the conventional theories of radiative transfer or small-angle scattering.
As an example of the approach we consider the first statistical moments of the field for a point source located
in a statistically homogeneous Gaussian random medium. The correction term obtained for the mean field
coincides exactly with the classical result of the Bourret approximation for the Dyson equation, but with a
much weaker restriction on the value of wave numkewhich allows us to analyze the correction as a
function ofk. The main feature of the result obtained for the second moment of the field is that the normalized
mean intensity is not equal to unity. We relate such behavior to the localization phenomenon. The dependence
of the correction term does not differ significantly from that obtained in works concerning the localization of
classical waves in discrete random med®1063-651X96)06610-X|

PACS numbds): 42.25-p, 41.20.Jb, 43.26.g

I. INTRODUCTION Dyson equation or the ladder approximation for the Bethe-
Salpeter equation. These approximations reduce the problem
The propagation of high-frequency radiation in randomto a phenomenologlcal equation of radiative transfer in

media has been the subject of investigation in various areahich some of the coherent effects are negle¢®dAt the
ame time it is the coherence and constructive interference

of physics for several decades. Some of the classical ap i . .
proaches are summarized in a number of monographs a tween time-reversed multlply scattered waves that give
review articles: see, e.d.1-6]. In spite of its long history, rise to enhanced backscatterif@9] and other double pas-

) . 4 age effect$10-12, related to the localization of classical
the subjgct still presents a challgnge when the complexity aves[13,14), the phenomena that represent a topic of in-
propagation environments requires the development of NeWreasing current interest.
methods and the derivation of new solutions for the statisti- Of course, the information contained in the initial formu-
cal measures of the field. lation, based on the scalar Helmholtz equation, is more com-

Most of the theories concerning the propagation of scalaplete and accounts for all the wave nature effects. However,
time-harmonic waves are based on the reduced Helmholthe elliptic character of the HE with the resulting lack of the
equation(HE). In a deterministic case a number of analytical dynamic causality condition causes essential difficulties in
and numerical techniques have been developed for solving€ €ffective investigation of wave propagation in random
this equation. However, in the presence of random inhomo€dia. In many situations the problem can be simplified by
geneities the HE acquires a stochastic character and direff@Sfer o a parabolic-type equati¢RB), which, in prin-
multiple computations become impossible for most practi-C'pIe’ allows one to account consistently for the wave nature

; o of the propagation process even in the regime of strong fluc-
cally important situations. tuations. The parabolic approximation is usually performed

In principle, the initial problem can be reformulated by 510ng some preferred geometrical ray of the background me-
dealing with integral equations for the mean figldyson  djum[15] and the resulting PE satisfies the causality condi-
equation or for the first even statistical moments of the field tion, which makes it a suitable tool for solving stochastic
(e.g. the Bethe-Salpeter equation for the coherence functiorproblems. At the same time the approximations performed in
[1,5]. Unfortunately, the solutions of these equations can béts derivation restrict the standard parabolic equatiSRB
obtained only by using some of the versions of perturbativeapproach to small-angle scattering with backscatter fully ne-
techniques, for example, the Bourret approximation for theglected.

Another group of methods is based on the expansion of
the unknown field into a series, each term of which is deter-
*Fax: 972-7-6472949. Electronic address: mined by the order of backscattering multiplicity. A compre-
gregory@newton.bgu.ac.il hensive review of these methods can be foundLB]. How-
TFax: 972-7-6472949. Electronic address: mazar@bguee.bgu.acaver, the complexity of summing the multiple-scatter series
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strongly limits the applicability of this approach. Finally, the we introduce the generalized parabolic equation and present
use of the invariant embedding meth¢ti7] reduces the its solution in a path-integral form. In order to reduce the
problem to solving some equations of an evolutional typegcontinual integral to its finitdN-dimensional version we ex-
but as a rule requires a special medium configuration. pand each virtual path into an eigenfunction series, similarly
In the present paper we adopt an approach that allows 8 What was done for the SH28]. While being similar from

also to reduce the initial formulation to a problem satisfyingthe mathematical point of view, these two solutions, how-
the causality condition and is related to the method originallyeVer, are characterized by considerably different physical
proposed by Fock for the integration of quantum-mechanicafontents since the extension performed contains trajectories
equationd 18]. The principal idea of the method is based ondescribingNth-order backscattering events. The unknown

the introduction of an additional pseudotime variable and orpOlution of the HE is related to the GPE solution by a special

the transfer to a higher-dimensional space in which th ntegral transform. In the far field this relation contains a
propagation process is described by the generalized paraboli h!y oscnlatory function, V.Vh'Ch ma_kes .extremely d|ff|cu!t
equation(GPE identical to the nonstationary Schiiager its direct nume_rlcal evaluation. To simplify the prob_lem, in
equation in quantum mechanifk9]. The advantage of such Sec. IV, following Palmel{26], we present the solution of

a transfer, which can be viewed also as a version of an eﬂh? ';.'E 'nftrt'ﬁ foér;EOf adserles, thte ]tlrstt;erm O.f Wh'c?.:)s ';_he
bedding technique, is that the solution of the resultingSO ution of the and accounts for the main contribution

ic- i i ) the unknown field. The following terms represent a series
ﬁﬁgﬂ 'szfne [ez%ugillonlrc;‘ar\;vgseprgfgggziggg iﬁgg?;a?hzatm GPE solution derivatives, which allows us to evaluate the
method was adopted by Buslaé22], who converted the COTections.

deterministic diffraction problem of asymptotic behavior for To exemphfy the proposed apprpach we cpn5|der in Sec.
V the mean field of a point source in a statistically homoge-

high-frequency radiation to that of solving the generalized ) : - :
g g y g 9 neous Gaussian random medium. Using a perturbative tech-

diffusion (parabolic-typg equation. Frisch 1] applied this . . !
procedure to random propagation problems and presentednélqufa and representing the _unknown f“f!C“O” asasum of.a
leading term plus a correction, we obtain some asymptotic

high-frequency approximation for the mean field using a . tor both | d I le inh i
Taylor expansion of the correlation function. expressions for both farge- and smail-scale Inhomogeneities

Further, this method, with some modifications, has beer?.f the medium. The second-order coherence function and

developed by many authors for both deterministic and S,[O[ugher statistical moments of the wave field are analyzed in

chastic wave propagation and scattering probl¢a®-27. Sec. VI. Further, in Sgc. Vil we gpply the resul'gs optaiped to

In particular, Klyatskin and Tatarskii23] have used the the asymptotic an.aIyS|s of classical wave Iocghzatlon in ran-
method originally proposed by Fradkin in the quantum 1‘ielddom media. 'Se_ct|on Vil of'the paper contains a summary
theory to construct a path-integral solution for the field of aand some principal concluding remarks.

point source in a semi-infinite random medium. In the high-

frequency limit, they estimated the corrections to the SPE Il. FORMULATION OF THE PROBLEM

solutions for the first two statistical moments of the field. \ye start with the time-harmonic Helmholtz equation de-

Chow [24] has obtained the general expressions for the stascribing the propagation and scattering of scalar waves in

tistical moments approximating the “classical action” in the y5nhomogeneous media. For the field of a point source lo-
path integral by a quadratic functional around a stationary.gieq alR, this equation has the form

trajectory. Palmer{26] has applied the path-integral ap-
proach to the problem of underwater sound propagation antt?G(R|R,)+k?[1+2(R)]G(R|Ry)=—8(R—R), (2.1
analyzed the stationary-phase approximation for the integral
transform connecting the solution of the HE with that of thewhereR denotes the position vector m-dimensional space
GPE. It has to be emphasized that the results presented in &ih=2 or 3), k is a wave number of the homogeneous me-
the above-mentioned works are far from complete, primarilydium, ande(R)=1+¢(R) is the permittivity distribution, in
due to neglect of backscattering effects in the final expreswhich £(R) is the random perturbation. We suppose that
sions. while ¢ is a real functionk contains an infinitesimally small

It is now well known that the path integral written in the positive imaginary par{im k>0) that provides the conver-
configuration space can be approximately evaluated using agence of some integrals appearing in the course of the work.
orthogonal expansion of each possible trajectory; the idea Equation(2.1) is equivalent to the Lippmann-Schwinger
arises from Feynman’s workg0]. For the SPE this method integral equation
has been effectively applied to some problems of small-angle
wave propagation in random media and described in detail iP(RIRo) = Go(R[Ry)
the recent review article of Charnotslat al. [28]. We ex-
tend the approach developed for the SPE and present a solu- +k2f d™R"e(R")Go(R'|Rg)G(RIR"), (2.2
tion for the generalized case. This allows us to calculate the
so—ca}l!ed wave corr_ectiqn terrg] and to estaplish sufficient whereGy(R|R,) is the free-space Green’s function satisfying
conditions of applicability of the conventional SPE ap-ihe equation
proach.

The outline of this work is as follows. First, in Sec. Il we V2Gy(R|Rp) + k?Go(R|Rg) = — 8(R—Ry) 2.3
formulate the general equations describing time-harmonic
wave propagation in honhomogeneous media and considand radiation condition at infinity. In then-dimensional
the small-angle parabolic approximation. Then, in Sec. llispace the Green’s functidBy(R|R,) is given by
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Go(R|Rg) = (i/4) (k27| R— Ry|) ™2 *HL,_ (KIR—Ry)). that the .propagation process ?s localized in the paraxial zone.
(2.4) In practice there are many important problems permitting
this approach, but, nevertheless, there are arbitrary situations
In the far fieldk|R—Rg/>1 one can use the first term of the for which some of the above assumptions are not fulfilled. In
asymptotic expansion of the Hankel function to approximatesuch situations it is necessary to bring into consideration a

Gy(R|Rp) by the formula theory that could satisfy the causality condition and, at the
15 (G2 (1-my2 same time, account for the multiple scattering including the
o(RIRg)=3(i/k) (2m[R—Ry|) backscattering effects. To this end we transfer to the equation
x exp(ik|R— Ro|) (2.5) that we refer as generalized parabolic one.
which is exact fom=3. Ill. GENERALIZED PARABOLIC EQUATION

In a random medium the functions of interest are the sta-
tistical measures such as mean fié@®(R|R,)) or second-
order coherence functiofG(R,|Ry;)G(R,|Ryy)) (the angular
brackets denote ensemble averaginp principle, these 2ikd G+VZG+k2[1+s(R)]G(R 7[Ry, 70) =0, 7> 70,
measures may be obtained by solving the Dyson or Bethe- (3.13
Salpeter equations, respectivgéb]. An alternative approach '
is based on the presentation of an unknown solution of Equith initial condition
(2.1) as a function of random perturbati@{R). However, _
the lack of the so-called dynamic causality condition due to G(R,79|Rg,79) = 8(R—Ry). (3.1b
the elliptic character of Eq2.1) causes essential difficulties
when one attempts to obtain such solutions. Physically itt is implied also that the functio® satisfies the radiation
means that, as a rule, it is not possible to find the direction o¢ondition, i.e., it vanishes fdR—o or 7—c (a small absorp-
spatial movement for which the field values at each subsetion Imk>0 is taken into account; for Irk=0 the required
quent point would be determined by the parameters of th&olution is obtained by an analytical continuatifih22]).
medium at the preceding spatial locations only. Therefore iComparing Eq.(3.1) with (2.1), it can be showr{18] that
is desirable to convert the initial problem to some auxiliarytheir solutions are related by the integral transform
evolutional-type formulation, which would satisfy the cau-

. L i e -
70

Let us consider an auxiliary problem for a function
GR, 1Ry, ) satisfying the equation

The conventional method that realizes this idea is based
on the transfer from Eq2.1) to the approximate parabolic- -
type equation describing the small-angle scattefig Ex-  Defining the functionG as
tracting the main phase term, we denote the reduced wave

: . - ok
function g(r,z|r,zo) by the relation G(R, 7] Ro,ro)=exr{l 5 (7= 70)

G(RIRo)=exik(z—20)19(r,2Ir0,2), (2.6

9(R,7[Ro,70) (3.3

and substituting it into Eq(3.1), we obtain the generalized
where thez axis corresponds to a preferred propagation di-parabolic equation
rection of the wave in a nonperturbed medigrange coor-

dinate andr is an(m—1)-dimensional vector in the trans- 2ikd,g+V?g+ k%€ (R)9(R,7|Rg,70)=0, 7>1,
verse plangcross-range coordingteNeglecting the second (3.49
range derivative yields the standard form of the parabolic

equation 9(R,70|Ro,70) = 3(R—Ro). (3.4b

2ika,g+V2+k%(r,2)g(r,z|r,29)=0, (2.74  Hence the Green's functio (R|R,) is defined through the
solution of the latter equation as
with the initial condition

i k
9(r,20|r9,20) = 8(r —ro). (2.70 G(RIRo)= 5 Lodrexp{i 2 (7770 |9(R7IRo, 70).

3.
Unlike G, the fieldg satisfies the causality condition in a 39
sense that the valug(r,z|r,2o) depends functionally upon We note that the generalized parabolic equat®#d) has a
previous values o}f(r z) only, i.e., on inhomogeneities in the higher dimension than the classical one.
layerzo<z'<z. Moreovgr the SPE coincides formally with For homogeneous mediuf@=0) the solution of Eq(3.4)
the nonstationary Schdinger equation in the(m—1)- is given by
dimensional space and therefore one can apply, by analogy
with the latter, the path-integral approach, which has been k m2 ik(R—Rg)?
: vity in vari 9o(R.7IRy ) =|5————| exg———
already demonstrated its productivity in various cases 2 (17— 7g) 2(7—7g)
[21,2§. (3.6)
However, the transfer to the SPE is justified only if the
inhomogeneities of the medium are sufficiently weak,Substituting Eq.(3.6) into (3.5 and taking into account a
smooth, and large scal@ompared to the wavelengthso  known integral representation of the Hankel functi@9],
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we obtain the required expressidd.4) for the free-space K | mN2 Kk N

Green'’s function of the Helmholtz equation. 0.(R,7|Rg,m0) = 2—) f d™NQy exp i > Z Qﬁ
The generalized parabolic equatit4) for the Green's l B n=1

function g(R,7Ry,7) coincides with the nonstationary K (7 o N
Schradinger equation in quantum mechanics. Using this xexp[i —f dt 5| R(t)+ >, l/fn(t)QnH-
analogy, the solution of the GPE can be presented in the 2 Ja n=1
Feynman path-integral form (3.14

R Formally, the path-integral representations for the stan-
DR(t)exp{iS[R(1)]}, (3.7  dard and generalized parabolic equations are identical, ex-
Ro cept that the latter has a dimension higher by unity than the
) ) ) ) ) first one. However, this difference has a significant physical
where the integratiof DR(t) in the continuum of possible content. As was already noted, the parabolic equations have
trajectories is interpreted as a sum of contributions of arbiz causal character. This means that the SPE describes the
trary paths along which the wave propagates from pBiit scattering process in the forward direction only, accounting
at the momentr, to pointR at the momentr and the func-  for the trajectories, which do not have any turning point with
tional respect to the range coordinateThe same restriction for the
GPE takes place with respect to the auxiliary pseudotime
k [~ - 5~ coordinater. If we consider the projectioR (t) of a conse-
SIRO]=5 j dt{[R(t)]*+e[R(t)]} (3.8 quent path onto the reah-dimensional space, we find that
o the generalized formulation allows trajectories with multiple
Nth-orde) turning points. Hence, while the number of terms
can b_e related to the phase acpumulated _along the corr aken into account in the series expansi8ri0 for the SPE
sponding path. The measubeR(t) in Eq. (3.7) is chosen S0 jetermines only the accuracy of the results, for the GPE this
that the normalization condition for a homogeneous mediunymper has an additional physical interpretation as the back-

ROk " scattering mqltiplicity. For this reason, repre_:sentatﬂﬁrld_f) _
J' DR(t)exp[i S J dt[R(t)]Z] — go(R, 7/ Ry, 7o) may be considered as an analog of the series expansion dis-
0

R(7)
g(R:T|ROvTo):f ~

R(7g)=

cussed i 16].

R(79)=R . . . .
o (3.9 Direct numerical evaluation of the exact formy®b) is
extremely difficult since in the far field the integrand con-
is satisfied. tains a highly oscillatory function. To simplify the calcula-

The path integral can be exactly evaluated only for Gausslions, in the next section we derive a series expansion of the
ian integrands, i.e., for the functionaR(t)] of a quadratic  ntegral transform3.5).
type. Invest|gat_|on of dlsordereq media requires an approxisy, seriES EXPANSION FOR THE GREEN'S FUNCTION
mate computation of the path integral. Using the approach
initially proposed in quantum mechanik20,28, we expand As shown in the preceding section, the Green’s function
each virtual trajectory into the series of the GPE can be presented as a product of two factors, the
first corresponding to the free space and the second related to

_ N the spatial fluctuationse(R). Substituting representation
R()=R(t)+ X, ¥,(1)Q,, (3.10  (3.13 into Eq.(3.5) gives
n=1
i (= ok
where G(R|Ro):ﬂ fTOdT exp{l E(T— 7o)
— T—t t— 7 Xgo(R,7|Rg,70)8:(R,7|Rg,70). (4.1
R(t)= Ro+ R (3.11 i ) .
T— 7o T— To Next, applying a formal identity
is a straight line connecting the poiriRg andR and ¢,,(t) is R 7R _ fw ds 8(s— R sIR
a complete set of orthogonal functions, e.g., 9:(R. 7[R0, 70) 08 (5= 19:(Rs[Ro, 7o),

4.2

(3.12 representing thes function by its spectral expansion, and
interchanging integration order allows us to evaluate the in-
tegral overr. This leads to the expression

As a result, the path integral can be presented as a product

()= V2(7—79) sin( ’7Tn:

mn

T—

G(R|R =f ds a.(R,s|Rg, 7
9(R, 7[R0, 70) = go(R, 7[R0, 70)9.(R,7|Ro, 70), (RIRo)= ] 95 ¢ (Re3lRo. 70
(3.13 1 (e
where g, is the free-space Green’s functidB.6) and the ><277 fﬁmdﬂ exili(s= 7o~ L) QLIF(0),
inhomogeneous factay, is a limit N—« of the following
finite-dimensional approximatiothereafter we use the nota-
tion N=1,2,...N): where the functiorF ,(Q)) is defined as

4.3
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F(Q)=(i/4)(ky1—2Q/k/27rL)™?  texp(iL Q) G,(R|Rg)=0.(R, 7o+ L|Ry, 7o){1+i(L/2K)[ ¢/ %+ ¢! ]
XHLL_(ky1-2Q/kL) (4.4 +(LI2KA)[ @3 +30lel+ @ T+ ). (412

andL=|R—R| is the distance between two given points in Obviously Eq.(4.10) is satisfied if all the additional terms in
the m-dimensional configurational space. The functionEq. (4.12 are small. Physically it means that, for instance,
exp(—iLQ)F,(Q) is the free-space Green'’s function for the the changes of the complex phaseof the GPE solution on
wave with a wave number equal to/1—-2Q/k. Alterna-  a distancelz=+/L/k (transverse size of the first Fresnel

tively, we can write down Eq4.3) as zone must be small compared to unity. This condition seems
. to state rigid limitations for many deterministic problems,
G(R|R0)=f ds £,(5)g,(R, 7o+ L —8|Rg, 7o), but as we will see below it can bg essentially r_ela>§ed for the
—w statistical moments of the wavefield propagating in random
(4.5 media.

where the functiorf,,(s) is the inverse Fourier transform
V. MEAN FIELD

fm(s):i fw dQ exp(—isQ)F(Q). (4.6) In this section we shall investigate the abilities of the
2T ) proposed approach for obtaining an approximate solution for
) _ ] the mean field, combining the series expansion for the
Representing the functiofi,(€2) in Eq. (4.3 by a Taylor  Green’s function and the path integration of the GPE. Ac-
series in the neighborhood 6f=0, we obtain the following  cording to Eqs(4.8) and (4.9) the mean field radiated by a

series expansion for the unknown propagator: point source is given by
o i n
G(R|Ry) = >, % FV(0)g!"(R, 7o+ L|Rg, o). (G(R|R0))=Go(RIRo){(g.(R, 70+ L|Ro, 7))
n=0 : . "
(47) +|(L/2k)<g€(R,To+L|R0,To)>+'}
(5.9

The coefficientd- ﬁTT)(O) may be simply evaluated for the far
field approximation(2.5), which allows us to present the
Green'’s function as a product of two factors

We assume that the fluctuations of the medium are described
by Gaussian statistics. Furthermore, let the random medium

G(R|Ry)=Go(R|Ry)G,(R|Ry) 4.9 be statistically homogeneous, i.e., let its correlation function
i.e., in a form similar to Eq(3.13. The inhomogeneous B.(R)=(&(Ry)e(Ry)) (5.2
factorG,.(R|Ry) in the three-dimensional case is given by the ) ,
following series in derivatives of the GPE solution: depend only on the difference vect&=R;—R,. In this
case, using Eq3.14), we find that the first term in expansion

G,(R|Rg)=0.(R, 79+ L|Rg, 7o) (5.1 has the form

+i(L/2K)g"(R, 7o+ L|Rg, 70) (9:(R, 70+ L|Rg, 70))

+(L/2k?)g" (R, 7o+ L|Rg, 7o) + - . 4.9 k \™2 0 kS,

=\ o deNEXIEEQn

Formally, the result is similar to the asymptotic expansion of n=t
DeSanto’s integral transform, relating the solutions of the 2 (L .
H_elmho_ltz equation _ and the SPE _in an arbitrary two- X exp — — f dt1J dt,F4(ty,t2:Qn) ¢
dimensional waveguidg30,31. The principal difference is 8 Jo 0 =
that Eq.(4.9) contains the solution of the GPE instead of the (5.3
SPE.

Keeping only the first term in this series and neglecting allvhere the scattering functiof(t,,t;;Qy) is given by
the derivatives, we obtain

N
T+n21 [wnal)—wn(tz)JQn)
(5.4

G.(R|Rg)~g.(R, 7o+ L|Rg, 7). (4.10 Fa(ty,t2;Qn) =B,

The applicability limits for this approximation may be evalu-

ated by applymg Rytov's complex phase approach, Spec'f'émd the vectoiT is defined asT:R_(tl)—R_(tz). For dimen-
cally representing thg, factor as

sionless variables the first exponent in E8.3) contains the
9.(R, 7o+ L|Ro, 7o) =exd ¢,(R, 7o+ L|Rg, 7)1, parameterkL, which is much greater than unity in the far
(4.1 field. Therefore, asymptotic evaluation of this integral, as
well as of similar integrals appearing further in the analysis
where ¢, is the component of the complex phase related tof the coherence function and higher-order statistical mo-
the inhomogeneities effects. Then the sef®$) reduces to ments of the field, can be based upon application of Erdelyi’s
the multiplicative form lemmal[32]
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o 1 ) For small values oy we can expand the second exponent
fo dx X"~ exp(isx”) f(x) in Eq. (5.11) and represent the solution as
(9:(R, 79+ LRy, 70)) =(9.(R, 70+ L|Rg, 70) {1+ 5+(' : }3)
I'l(n+v)/ 51
DT gy oo, o] e
n=0 nn (5.5 Using the spectral representation of the correlation function
So the values of statistical moments of the field are pre- BS(R)=f d™K exp(iR-K)D(K), (5.19

scribed by the behavior of the corresponding integrand for

small values oQy. The leading term of the series expansion\ye ghtain for the first correction ternd in both two- and

for the statistically isotropic correlation functi@®).(R), after three-dimensional cases the expression
introducing new sum and difference variables

kZ (L L _
t'=(1/2)(t1+t), t=t;—t,, (5.6 =g fo dtljo dtzf d"K® (K)exp(iT-K)
and integrating ovet’, is given by X[1—exp(—ingK?)], (5.1

where

_ k? (L

(gS(R,ro+L|R0,TO)>=exp[—ZJO dt(L—t)Bg(t)}. N
1

6.2 7(N)= 55 2 [n(t) = n()]. (510

This formula, originally obtained by Klyatskin and TatarsKii,
represents the simplest generalization of the Markov ap'—“‘n exact summation foN—< leads to
proximation applied to the standard parabolic equaffn
This term is purely real and describes the extinction of the n=(L/2k)(t/L)(1—-t/L), (5.1
coherent part of the field.

As an example we shall perform the calculations for the
isotropic correlation function of a Gaussian form with char-
acteristic correlation scale :

wheret is defined by the second of E(%.6). Slow conver-
gence to the exact resflll—x) is observed. The same con-
clusion was made in21] regarding analogous asymptotic
expansions for the scintillation index evaluated in the frame-
work of the SPE. From the mathematical point of view this is

BS(R):‘TE exp(—Rzllﬁ). (5.8 caused by the difference in the velocity of growth of the
exact functionn and its finite versiony(N). Unlike the ap-
The leading term in this case is given by proximation of by several first terms, the exact function is
linear for smallt. Such a distinction can provide not only a
(9(R, 70+ L|Rg, 7)) =exp —al), (5.9 quantitative difference in the solution but also dramatic

changes in its behavior. The sufficient number of the eigen-
wherea is the extinction coefficient. If the normalized path functions is proportional to the value of. Therefore, an

length/'=L/l, is much greater than unity, we have adequate result may be obtained only by taking into account
a large number of eigenfunctions i.e., a high multiplicity of
a~ay= (78K o2, (5.10 backscattering events.

Since, besides that, the exact versionyalepends on the
difference coordinateonly, we can perform easily one more

In order to calculate the correction ¢6.9) we present the integration with the result

mean-field solution in the form

k? (L _
<g€(R,To+ L|Ro,7’0)> (5: Z fo dt(L_t)f de(DS(K)qulT'K)
:<9_(R ro+L|Ro,To)> X[1—exp(—inK?)]. (5.18
N k N ) For »—0 we can approximate the last exponent in &q18
omi J d™ Qnex '5 n§=: Qn by the first two terms of its series expansion. Such a replace-

ment is correct only if the transverse size of the first Fresnel
k? (L L - zone is much smaller than the minimal scale of random in-
xe P{ f dtlf dt, l(tlatZ:QN)J (5.1  homogeneities, , i.e., in the domain of applicability of geo-
metrical optics. In this caséis purely imaginary. Evidently,
the imaginary component af is related to the mean phase
where shift.

_ For example, in three dimensions the correction term is
Fi(ty,t2;Qn) =Fa(t1,15,0) = Fy(t1,t;Qn). (5.1  defined by
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6=i(7r/2)ka dK KX{1-2(LK) 2 10 ' ' '
0
X[1—cog LK)}, (K). (5.19 08| .
The Gaussian correlation functigh.8) corresponds to the g
spectral density of random inhomogeneitigs=3) 2 08 ]
5
2,3 2102 T 04t -
&, (K)=(1/87%?)c%I3 exp(—12K?/4).  (5.20 S
£
Using this spectrum and performing the integration in Eq. 2 42l i
(5.19 leads to
00 l——eiuu el el

0.1 1 10
Normalized wave number «

=it/ {1-/"1l—exp(— /D) o?,  (5.2))

where k=Kl is the normalized wave number.
For the opposite situation, whén—o such ad. /kl%—
we obtain the expression

FIG. 1. Normalized correction to the mean field fe¥’<1 in
three dimensions.

on the Markov approximation for the SPE and define more
o precisely the necessary conditions obtaine{4ib|.
Im 5=(7r/2)k2LJ dK K In|(2k+K)/(2k—K)|D ,(K),
0

(5.22 VI. COHERENCE FUNCTION

which for the same Gaussian spectrum can be presented as AND HIGHER-ORDER MOMENTS

Using the analysis of the mean field as a test for the ap-
proximations performed, we can now move to the evaluation

Im 5= (\/m/8)c(k)k?/ o, (5.23  of the coherence function and higher-order statistical mo-
) o ments, which could be helpful for the description of the sta-
with the coefficient tistical properties of the field propagating in strongly inho-

mogeneous media. For the point source located at the origin
Ry=0, the normalizedwith free space factor removgdo-

C(K)=(2/7T)K2J dz zexp( — k222)In|(1+2)/(1-2)|. herence function is defined as
0
(5.29
This result coincides exactly with the corresponding formula ¥2(R1,R2) =(G,(R1|Rg)G* (R3|Ry))- 6.1

obtained by solving the Dyson equation in the case of small-
scale inhomogeneitiga<1) [5]. Our derivation is based on
the requiremenk// <1, which is much weaker for large val- Choosing the observation poir®y andR; to be located on

ues of/ and allows us to analyze the behavior of fnas a  a sphere centered on a point source location and using the
function of x. Comparing Eq.(5.23 with the extinction series expansion in the form of E@t.9), we can also write
aoL:(\/;/g)KZ/gg, we note that the coefficiert(x) de- down a similar expression for the coherence function

fines approximately the value of mean phase shift normal-
ized to the extinction of the coherent part of the field.
Graphically the variatior(«) is shown in Fig. 1. We see that

— *
the dependence has a resonant structure with the maximun?2(R1,R2)=(9:(Ry, 70+ L|Ro, 70)7 (Rz, 7o+ L|Ro, 70))

located atx~1. 2/
+(L/2k Ry,70+L|Rg,
Now we shall estimate the next term in the series expan- ( JX9:(R1,70% LIRo, 70)
sion (5.1). Taking into account only the leading term and Xg”*(Rz 70+ L|Rg,70))
interchanging the order of statistical averaging and differen- © ' ’
tiation, we find for the correction +(L/k?){(g.(Ry, 7o+ L|Rg,7p)

This correction is equal to the extinction on the wavelength

scale. It is clear that this term can be significant only in thewhereL is the radius of the observation sphere. Similarly to

geometrical optics regime. Finally, it is useful to note thatthe case of the mean field, it can be shown that in the far field
our estimates of all the correction terms give the sufficienkL>1, the coherence function is well defined by keeping

conditions of applicability of the classical formulation basedonly the first term of the corresponding series
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expansion. Let us introduce the angldbetween the obser-

vation points. Hence, performing averaging we find

72(9,L):(k/2fn')mNj dmNPEf dmNQﬂ

N k2 L
X ex ikE P, Q| ex ——j dt;
n=1 4 0

; (6.3

L
X fo dt2F2(t1 ,tz 1 PEIQE)

where the scattering functidn, is defined by

Fa(ty,t2;Pn, Qn) = D [Ra(t1) = Ra(t2)]
1 2
—= 2 D,[R;(t)—Rj(ty)] (6.4
25

andD, is the structure function of the inhomogeneitjé$

D.(Ry,Ry)=([e(Ry) —(Ry)1%). (6.9

For a statistically homogeneous medium the structure func-
tion depends only on the difference vector and is related to

the correlation function as
D.(R)=2[B,(0)-B.(R)]. (6.6)

The vectors

N
Ri(O=R;(1)+ X dn(D[P+(~1)7'Qy/2), j=1.2
(6.7

in Eq. (6.4) define the trajectories connecting the source with

the corresponding observation point.

Applying Erdeyi’'s lemma to Eq(6.3), we find that the

leading term is given by

_ k? (L L
¥2(0,L)=ex _Zfo dtlfo dt;F,(t1,t5;0,0) |

(6.9

As the mean field, we can represent the coherence function

in the form of a series expansion

¥2(0,L)=yo(0,L){1+ x+---}, (6.9

where the first correctiol is presented by the expression

k? L L
X=7 fo dtljo dtz(k/ZW)me dmNPﬂf dmNQM

N
Xex;{ IkZ]_ Pn~Qn)E2(tl,t2;PNyQN)y (61()
in which

Falty by P, Qn) = Fa(ts,12;0,0) = Fa(ty, t2; Py; Q).
(6.1

GREGORY SAMELSOHN AND REUVEN MAZAR 54

Next, using the spectral form of the structure function
DE(R)ZZJ d"K[1-expiR-K)]® (K), (6.12

we obtain

k2 rL L
XZE fo dtlJo dtzJ deCI)g(K){eXF(ITlK)

X[ 1—cog 7K?)]—exp(i T, K)[1-cog 7K?) ]},
(6.13

where

T1=Ri(t) —Rj(ty), T,=Ry(t;)—Ry(ty), (6.14

and

SO
7N =5 2 [t —yi(t)]. (619

n=1
Performing exact summation in E(f.15 for N— leads to

7= (L/2K)(t/L)(1—2t'/L), (6.16

wheret andt’ are defined by Eqg5.6).

Applying the same approximation, all higher-order statis-
tical moments of the field can be evaluated. For example, the
second-order intensity mome(fourth-order moment of the
field) is given as

K 2mN
ya(0,L)= 5) fd“mNQﬂu

K N 4

xex;{i =2 > (—1)11Q12}
2 n=1j=1
k2 (L (L

X ex _—f dtlf dtF4(ty,t2:Qan) |
4 Jo 0 T

(6.17
where

14
Fa(t1,12;Qsan) 252:1 D.[R;(t1) —Rj(t2) ]+ D [Ry(ty)

—R3(t2) ]+ D [Ra(ty) —Ry4(t2)]
—D,[Ra(t1) = Ra(t2) ] = D[ Ry(t1)
—Ry(t2)]= D [Ra(t1) = Rs(ty)]
— D [Ra(t1) —Ry(t2) ],

and the trajectorieR;(t) are defined as

(6.18

N
Rj(t)=Rs(t)+n§1 n(ODQjn, i=1,...,4. (6.19

Heres=1 for j=1,2 ands=2 for j=3,4. Using the appro-
priate manipulations, we can also apply a similar integration
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procedure for the fourth moment as well as for other higher- .,
order statistical moments. However, computations of the re-
sulting expressions in the general case require the use of
special versions of the Monte Carlo methfgB—-35. We
hope that an analytical asymptotic solution can be obtained
in the strong fluctuations regime and we intend to analyze
this elsewhere in the future.

—_

o
M)
T

VII. TRANSITION TO LOCALIZATION

e
o
T

The normalized mean intensityl.) can be obtained from
the coherence functiom,(6,L) for §=0:

Normalized correction s(x

(L)=21+x+---, (7.2

0.0 L———t e e
where 0.1 1 10

Normalized wave number «

2 rL L
)(=k? f dtlf dtzf d"K @, (K)cogT-K) FIG. 2. Normalized correction to the mean intensity fér'<1
0 0 in three dimensions.
X [cog7K?)—cog 7K?)]. (7.2
The dependence of the coefficienbn the normalized wave
We see that, according to Eq§.1) and (7.2), (L) is not numberx is shown in Fig. 2. We see that there is a suffi-
equal to unity in the general case. Obviously such behaviogiently narrow window of« for which an essential increase
can be recognized as a manifestation of the so-called weal the correction can be observed. The wavelength in this
localization of classical wavdd4]. We expect that investi- window is comparable to the correlation lengthand this is
gation of this asymptotic result can be helpful in the descripthe natural estimate in the framework of the wave localiza-
tion of the transition from extended to localized states. tion concepf14].
Introducing in Eq.(7.2) the new variables, defined by
E)Sb.ginand integrating over the difference coordinatenve VIl SUMMARY AND CONCLUSIONS

. In this paper, we have implemented the Feynman path-
XZKZJ dt(L—t)J d™K @, (K)cogT-K) !ntegral approac_h to the prpblems of scalar wave propagation
0 in random media. For this purpose we have applied the
i ) ) method originally proposed by Fock for the integration of
X[(7K?) " sin(7K?) — cog 7K?)]. (7.3 quantum-mechanical equations. The principal idea of the
method is based on the introduction of an additional
epseudotime variable and the transfer to a higher-dimensional
space in which the propagation process is described by a
generalized parabolic equation similar to the nonstationary

For the geometrical optics regime this expression in th
three-dimensional case reduces to

X=277J dK K?{1+ (LK) ! sin(LK)—4(LK)2 Schralinger equation in quantum mechanics. The advantage

0 of such a transfer, which can be interpreted also as a version
X[1—cog LK)} (K). (7.4) of the embedding technique, is that the solution of the

€ parabolic-type equation can be presented in a path-integral

Using the Gaussian spectrui®.20), we find that form. Such a representation, which also allows us to con-

struct the statistical moments of the field, may be considered
x=31-2/"2+(1+2/"%)exp—/?)]o?. (715 asa general solution of the problem, accounting for all the
wave-nature effects. The question, however, is how to trans-
For the opposite situation whdn—o and L/k|§_>oo we form this general mathematical structure into a physically
have the asymptotic formula tractable form. To do this we first represented the path inte-
gral by a limitN—o to a finite N-dimensional integral over
s [ the expansion coefficients of each virtual path into an eigen-
x=4mk '—Lde D,(K). (760 function series. The number of terms taken into account in
the series expansion has a clear physical interpretation as the
Performing the integration in Eq7.6) with the same spec- backscattering multiplicity. Furthermore, the representation
trum leads to has the multiplicative form, namely, the form of products of
two factors, one of which is related to the homogeneous
x=5(x)/ 0%, (7.7 medium, while the other reflects the effect of the inhomoge-
neities. Presenting the unknown propaga®(R|R,) in a
where similar multiplicative form, we restricted our attention to the
far-field approximation, for which the corresponding inho-
s(k)=(m/2) k> erfo( k). (7.8  mogeneous factor is given by that of GPE.
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As an example, the application of the proposed approachvaluation of the coherence function and higher-order mo-
is examined for the first statistical moments of the field ex-ments. Here we have presented quite general expressions for
cited by a point source in a statistically homogeneous Gaus$oth second and fourth moments of the field. In the case of
ian random medium. In the Markov approximation for the the second-order coherence function a simple asymptotic for-
random fluctuations of the medium the result reduces to thghula was derived. The main feature of the result obtained is
known solution of the standard parabolic equation. To obtaifhat in the far field the normalized mean intensity is not equal
a more correct estimate, we applied a perturbative techniqugy ynity. We connect such behavior with the localization
presenting the solution as a sum of a leading term, which i$nenomenon, specifically with the asymptotic transition from
merely the SPE solution, and the correction term, which acq,tanded to localized states. In fact, as was shown, the de-

counts for the coherent backscattering effects. Analyzing thﬁendence of the correction term on the wave number has a

results obtained as functions of the number of elgenfuncquite narrow peak centered at the typical spatial frequency in

tions, we found that even for the simplest perturbative aPthe spectral density of the medium. This dependence does

proach applied here, the results contain much more informa-

tion than the approaches accounting for a small number 0|?ot differ significantly from that obtained in classical works
backscattering events concerning wave localization in discrete random méd.

The correction term obtained for the mean field coincides Hence the technique applied in gur work allows us to
exactly with the classical result of the Bourret approximation2ccount for the coherent backscattering effects and to evalu-

for the Dyson equation but with a much weaker restriction@€ theé wave correction terms for all statistical moments of
on the value of the wave numblr which allows us to ana- the field. On the other hand, the corrections obtained permit
|yze the correction as a function & We have shown that US to establish the sufficient condition of appllcablllty of the
the dependence has a resonant structure with the maximugtandard parabolic equation in various situations. We also
corresponding to a wavelength having the order of magnihope that the limitations of the approach, due to the asymp-
tude of the characteristic scale of the inhomogeneous mdetic procedures used, could be essentially relaxed by appli-
dium. cation of direct numerical techniques, particularly Monte
A similar analysis may also be used for the asymptoticCarlo methods, to evaluation of the functional integrals.
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