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In this work we consider the general problem of scalar wave propagation in a continuously inhomogeneous
random medium, applying the approach originally proposed by Fock for the integration of quantum-
mechanical equations. The principal idea of the method is based on the introduction of an additional
pseudotime variable and the transfer to a higher-dimensional space, in which the propagation process is
described by the generalized parabolic equation similar to the nonstationary Schro¨dinger equation in quantum
mechanics. We present its solution in a form of Feynman path integral, the asymptotic evaluation of which in
the far field allows us to estimate the so-called wave correction terms. These corrections are related to coherent
backscattering and repeated multiple-scattering events on the same inhomogeneities, i.e., to the phenomena that
are not described in the framework of the conventional theories of radiative transfer or small-angle scattering.
As an example of the approach we consider the first statistical moments of the field for a point source located
in a statistically homogeneous Gaussian random medium. The correction term obtained for the mean field
coincides exactly with the classical result of the Bourret approximation for the Dyson equation, but with a
much weaker restriction on the value of wave numberk, which allows us to analyze the correction as a
function ofk. The main feature of the result obtained for the second moment of the field is that the normalized
mean intensity is not equal to unity. We relate such behavior to the localization phenomenon. The dependence
of the correction term does not differ significantly from that obtained in works concerning the localization of
classical waves in discrete random media.@S1063-651X~96!06610-X#

PACS number~s!: 42.25.2p, 41.20.Jb, 43.20.1g

I. INTRODUCTION

The propagation of high-frequency radiation in random
media has been the subject of investigation in various areas
of physics for several decades. Some of the classical ap-
proaches are summarized in a number of monographs and
review articles: see, e.g.,@1–6#. In spite of its long history,
the subject still presents a challenge when the complexity of
propagation environments requires the development of new
methods and the derivation of new solutions for the statisti-
cal measures of the field.

Most of the theories concerning the propagation of scalar
time-harmonic waves are based on the reduced Helmholtz
equation~HE!. In a deterministic case a number of analytical
and numerical techniques have been developed for solving
this equation. However, in the presence of random inhomo-
geneities the HE acquires a stochastic character and direct
multiple computations become impossible for most practi-
cally important situations.

In principle, the initial problem can be reformulated by
dealing with integral equations for the mean field~Dyson
equation! or for the first even statistical moments of the field
~e.g. the Bethe-Salpeter equation for the coherence function!
@1,5#. Unfortunately, the solutions of these equations can be
obtained only by using some of the versions of perturbative
techniques, for example, the Bourret approximation for the

Dyson equation or the ladder approximation for the Bethe-
Salpeter equation. These approximations reduce the problem
to a phenomenological equation of radiative transfer in
which some of the coherent effects are neglected@7#. At the
same time it is the coherence and constructive interference
between time-reversed multiply scattered waves that give
rise to enhanced backscattering@8,9# and other double pas-
sage effects@10–12#, related to the localization of classical
waves@13,14#, the phenomena that represent a topic of in-
creasing current interest.

Of course, the information contained in the initial formu-
lation, based on the scalar Helmholtz equation, is more com-
plete and accounts for all the wave nature effects. However,
the elliptic character of the HE with the resulting lack of the
dynamic causality condition causes essential difficulties in
the effective investigation of wave propagation in random
media. In many situations the problem can be simplified by
transfer to a parabolic-type equation~PE!, which, in prin-
ciple, allows one to account consistently for the wave nature
of the propagation process even in the regime of strong fluc-
tuations. The parabolic approximation is usually performed
along some preferred geometrical ray of the background me-
dium @15# and the resulting PE satisfies the causality condi-
tion, which makes it a suitable tool for solving stochastic
problems. At the same time the approximations performed in
its derivation restrict the standard parabolic equation~SPE!
approach to small-angle scattering with backscatter fully ne-
glected.

Another group of methods is based on the expansion of
the unknown field into a series, each term of which is deter-
mined by the order of backscattering multiplicity. A compre-
hensive review of these methods can be found in@16#. How-
ever, the complexity of summing the multiple-scatter series
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strongly limits the applicability of this approach. Finally, the
use of the invariant embedding method@17# reduces the
problem to solving some equations of an evolutional type,
but as a rule requires a special medium configuration.

In the present paper we adopt an approach that allows us
also to reduce the initial formulation to a problem satisfying
the causality condition and is related to the method originally
proposed by Fock for the integration of quantum-mechanical
equations@18#. The principal idea of the method is based on
the introduction of an additional pseudotime variable and on
the transfer to a higher-dimensional space in which the
propagation process is described by the generalized parabolic
equation~GPE! identical to the nonstationary Schro¨dinger
equation in quantum mechanics@19#. The advantage of such
a transfer, which can be viewed also as a version of an em-
bedding technique, is that the solution of the resulting
parabolic-type equation can be presented in a Feynman path-
integral form @20,21#. In wave propagation theory the
method was adopted by Buslaev@22#, who converted the
deterministic diffraction problem of asymptotic behavior for
high-frequency radiation to that of solving the generalized
diffusion ~parabolic-type! equation. Frisch@1# applied this
procedure to random propagation problems and presented a
high-frequency approximation for the mean field using a
Taylor expansion of the correlation function.

Further, this method, with some modifications, has been
developed by many authors for both deterministic and sto-
chastic wave propagation and scattering problems@23–27#.
In particular, Klyatskin and Tatarskii@23# have used the
method originally proposed by Fradkin in the quantum field
theory to construct a path-integral solution for the field of a
point source in a semi-infinite random medium. In the high-
frequency limit, they estimated the corrections to the SPE
solutions for the first two statistical moments of the field.
Chow @24# has obtained the general expressions for the sta-
tistical moments approximating the ‘‘classical action’’ in the
path integral by a quadratic functional around a stationary
trajectory. Palmer@26# has applied the path-integral ap-
proach to the problem of underwater sound propagation and
analyzed the stationary-phase approximation for the integral
transform connecting the solution of the HE with that of the
GPE. It has to be emphasized that the results presented in all
the above-mentioned works are far from complete, primarily
due to neglect of backscattering effects in the final expres-
sions.

It is now well known that the path integral written in the
configuration space can be approximately evaluated using an
orthogonal expansion of each possible trajectory; the idea
arises from Feynman’s works@20#. For the SPE this method
has been effectively applied to some problems of small-angle
wave propagation in random media and described in detail in
the recent review article of Charnotskiiet al. @28#. We ex-
tend the approach developed for the SPE and present a solu-
tion for the generalized case. This allows us to calculate the
so-called wave correction terms@7# and to establish sufficient
conditions of applicability of the conventional SPE ap-
proach.

The outline of this work is as follows. First, in Sec. II we
formulate the general equations describing time-harmonic
wave propagation in nonhomogeneous media and consider
the small-angle parabolic approximation. Then, in Sec. III

we introduce the generalized parabolic equation and present
its solution in a path-integral form. In order to reduce the
continual integral to its finiteN-dimensional version we ex-
pand each virtual path into an eigenfunction series, similarly
to what was done for the SPE@28#. While being similar from
the mathematical point of view, these two solutions, how-
ever, are characterized by considerably different physical
contents since the extension performed contains trajectories
describingNth-order backscattering events. The unknown
solution of the HE is related to the GPE solution by a special
integral transform. In the far field this relation contains a
highly oscillatory function, which makes extremely difficult
its direct numerical evaluation. To simplify the problem, in
Sec. IV, following Palmer@26#, we present the solution of
the HE in the form of a series, the first term of which is the
solution of the GPE and accounts for the main contribution
to the unknown field. The following terms represent a series
in GPE solution derivatives, which allows us to evaluate the
corrections.

To exemplify the proposed approach we consider in Sec.
V the mean field of a point source in a statistically homoge-
neous Gaussian random medium. Using a perturbative tech-
nique and representing the unknown function as a sum of a
leading term plus a correction, we obtain some asymptotic
expressions for both large- and small-scale inhomogeneities
of the medium. The second-order coherence function and
higher statistical moments of the wave field are analyzed in
Sec. VI. Further, in Sec. VII we apply the results obtained to
the asymptotic analysis of classical wave localization in ran-
dom media. Section VIII of the paper contains a summary
and some principal concluding remarks.

II. FORMULATION OF THE PROBLEM

We start with the time-harmonic Helmholtz equation de-
scribing the propagation and scattering of scalar waves in
nonhomogeneous media. For the field of a point source lo-
cated atR0 this equation has the form

¹2G~RuR0!1k2@11 «̃~R!#G~RuR0!52d~R2R0!, ~2.1!

whereR denotes the position vector inm-dimensional space
~m52 or 3!, k is a wave number of the homogeneous me-
dium, and«~R!511«̃~R! is the permittivity distribution, in
which «̃~R! is the random perturbation. We suppose that
while « is a real function,k contains an infinitesimally small
positive imaginary part~Im k.0! that provides the conver-
gence of some integrals appearing in the course of the work.

Equation~2.1! is equivalent to the Lippmann-Schwinger
integral equation

G~RuR0!5G0~RuR0!

1k2E dmR8«̃~R8!G0~R8uR0!G~RuR8!, ~2.2!

whereG0~RuR0! is the free-space Green’s function satisfying
the equation

¹2G0~RuR0!1k2G0~RuR0!52d~R2R0! ~2.3!

and radiation condition at infinity. In them-dimensional
space the Green’s functionG0~RuR0! is given by
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G0~RuR0!5~ i /4!~k/2puR2R0u!m/221Hm/221
~1! ~kuR2R0u!.

~2.4!

In the far fieldkuR2R0u@1 one can use the first term of the
asymptotic expansion of the Hankel function to approximate
G0~RuR0! by the formula

G0~RuR0!5 1
2 ~ i /k!~32m!/2~2puR2R0u!~12m!/2

3exp~ ikuR2R0u!, ~2.5!

which is exact form53.
In a random medium the functions of interest are the sta-

tistical measures such as mean field^G~RuR0!& or second-
order coherence function̂G~R1uR01!G~R2uR02!& ~the angular
brackets denote ensemble averaging!. In principle, these
measures may be obtained by solving the Dyson or Bethe-
Salpeter equations, respectively@5#. An alternative approach
is based on the presentation of an unknown solution of Eq.
~2.1! as a function of random perturbation«̃~R!. However,
the lack of the so-called dynamic causality condition due to
the elliptic character of Eq.~2.1! causes essential difficulties
when one attempts to obtain such solutions. Physically it
means that, as a rule, it is not possible to find the direction of
spatial movement for which the field values at each subse-
quent point would be determined by the parameters of the
medium at the preceding spatial locations only. Therefore it
is desirable to convert the initial problem to some auxiliary
evolutional-type formulation, which would satisfy the cau-
sality condition@17#.

The conventional method that realizes this idea is based
on the transfer from Eq.~2.1! to the approximate parabolic-
type equation describing the small-angle scattering@5#. Ex-
tracting the main phase term, we denote the reduced wave
functiong~r ,zur0,z0! by the relation

G~RuR0!5exp@ ik~z2z0!#g~r ,zur0 ,z0!, ~2.6!

where thez axis corresponds to a preferred propagation di-
rection of the wave in a nonperturbed medium~range coor-
dinate! and r is an ~m21!-dimensional vector in the trans-
verse plane~cross-range coordinate!. Neglecting the second
range derivative yields the standard form of the parabolic
equation

2ik]zg1¹ r
21k2«̃~r ,z!g~r ,zur0 ,z0!50, ~2.7a!

with the initial condition

g~r ,z0ur0 ,z0!5d~r2r0!. ~2.7b!

Unlike G, the fieldg satisfies the causality condition in a
sense that the valueg~r ,zur0,z0! depends functionally upon
previous values of«̃~r ,z! only, i.e., on inhomogeneities in the
layerz0<z8,z. Moreover, the SPE coincides formally with
the nonstationary Schro¨dinger equation in the~m21!-
dimensional space and therefore one can apply, by analogy
with the latter, the path-integral approach, which has been
already demonstrated its productivity in various cases
@21,28#.

However, the transfer to the SPE is justified only if the
inhomogeneities of the medium are sufficiently weak,
smooth, and large scale~compared to the wavelength!, so

that the propagation process is localized in the paraxial zone.
In practice there are many important problems permitting
this approach, but, nevertheless, there are arbitrary situations
for which some of the above assumptions are not fulfilled. In
such situations it is necessary to bring into consideration a
theory that could satisfy the causality condition and, at the
same time, account for the multiple scattering including the
backscattering effects. To this end we transfer to the equation
that we refer as generalized parabolic one.

III. GENERALIZED PARABOLIC EQUATION

Let us consider an auxiliary problem for a function
G̃~R,tuR0,t0! satisfying the equation

2ik]tG̃1¹2G̃1k2@11 «̃~R!#G̃~R,tuR0 ,t0!50, t.t0 ,
~3.1a!

with initial condition

G̃~R,t0uR0 ,t0!5d~R2R0!. ~3.1b!

It is implied also that the functionG̃ satisfies the radiation
condition, i.e., it vanishes forR→` or t→` ~a small absorp-
tion Im k.0 is taken into account; for Imk50 the required
solution is obtained by an analytical continuation@1,22#!.
Comparing Eq.~3.1! with ~2.1!, it can be shown@18# that
their solutions are related by the integral transform

G~RuR0!5
i

2k Et0

`

dt G̃~R,tuR0 ,t0!. ~3.2!

Defining the functionG̃ as

G̃~R,tuR0 ,t0!5expF i k2 ~t2t0!Gg~R,tuR0 ,t0! ~3.3!

and substituting it into Eq.~3.1!, we obtain the generalized
parabolic equation

2ik]tg1¹2g1k2«̃~R!g~R,tuR0 ,t0!50, t.t0
~3.4a!

g~R,t0uR0 ,t0!5d~R2R0!. ~3.4b!

Hence the Green’s functionG~RuR0! is defined through the
solution of the latter equation as

G~RuR0!5
i

2k Et0

`

dt expF i k2 ~t2t0!Gg~R,tuR0 ,t0!.

~3.5!

We note that the generalized parabolic equation~3.4! has a
higher dimension than the classical one.

For homogeneous medium~«̃50! the solution of Eq.~3.4!
is given by

g0~R,tuR0 ,t0!5F k

2p i ~t2t0!
Gm/2 expF ik~R2R0!

2

2~t2t0!
G .
~3.6!

Substituting Eq.~3.6! into ~3.5! and taking into account a
known integral representation of the Hankel function@29#,
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we obtain the required expression~2.4! for the free-space
Green’s function of the Helmholtz equation.

The generalized parabolic equation~3.4! for the Green’s
function g~R,tuR0,t0! coincides with the nonstationary
Schrödinger equation in quantum mechanics. Using this
analogy, the solution of the GPE can be presented in the
Feynman path-integral form

g~R,tuR0 ,t0!5E
R~t0!5R0

R~t!5R
DR~ t !exp$ iS@R~ t !#%, ~3.7!

where the integration*DR(t) in the continuum of possible
trajectories is interpreted as a sum of contributions of arbi-
trary paths along which the wave propagates from pointR0
at the momentt0 to pointR at the momentt and the func-
tional

S@R~ t !#5
k

2 E
t0

t

dt$@Ṙ~ t !#21 «̃@R~ t !#% ~3.8!

can be related to the phase accumulated along the corre-
sponding path. The measureDR(t) in Eq. ~3.7! is chosen so
that the normalization condition for a homogeneous medium

E
R~t0!5R0

R~t!5R
DR~ t !expH i k2 E

t0

t

dt@Ṙ~ t !#2J 5g0~R,tuR0 ,t0!

~3.9!

is satisfied.
The path integral can be exactly evaluated only for Gauss-

ian integrands, i.e., for the functionalsS@R(t)# of a quadratic
type. Investigation of disordered media requires an approxi-
mate computation of the path integral. Using the approach
initially proposed in quantum mechanics@20,28#, we expand
each virtual trajectory into the series

R~ t !5R̄~ t !1 (
n51

N

cn~ t !Qn , ~3.10!

where

R̄~ t !5
t2t

t2t0
R01

t2t0
t2t0

R ~3.11!

is a straight line connecting the pointsR0 andR andcn(t) is
a complete set of orthogonal functions, e.g.,

cn~ t !5
A2~t2t0!

pn
sinS pnt

t2t0
D . ~3.12!

As a result, the path integral can be presented as a product

g~R,tuR0 ,t0!5g0~R,tuR0 ,t0!g«~R,tuR0 ,t0!,
~3.13!

where g0 is the free-space Green’s function~3.6! and the
inhomogeneous factorg« is a limit N→` of the following
finite-dimensional approximation~hereafter we use the nota-
tion NI 51,2,...,N!:

g«~R,tuR0 ,t0!5S k

2p i D mN/2E dmNQN expS i k2 (
n51

N

Qn
2D

3expH i k2 E
t0

t

dt «̃F R̄~ t !1 (
n51

N

cn~ t !QnG J .
~3.14!

Formally, the path-integral representations for the stan-
dard and generalized parabolic equations are identical, ex-
cept that the latter has a dimension higher by unity than the
first one. However, this difference has a significant physical
content. As was already noted, the parabolic equations have
a causal character. This means that the SPE describes the
scattering process in the forward direction only, accounting
for the trajectories, which do not have any turning point with
respect to the range coordinatez. The same restriction for the
GPE takes place with respect to the auxiliary pseudotime
coordinatet. If we consider the projectionRt(t) of a conse-
quent path onto the realm-dimensional space, we find that
the generalized formulation allows trajectories with multiple
~Nth-order! turning points. Hence, while the number of terms
taken into account in the series expansion~3.10! for the SPE
determines only the accuracy of the results, for the GPE this
number has an additional physical interpretation as the back-
scattering multiplicity. For this reason, representation~3.14!
may be considered as an analog of the series expansion dis-
cussed in@16#.

Direct numerical evaluation of the exact formula~3.5! is
extremely difficult since in the far field the integrand con-
tains a highly oscillatory function. To simplify the calcula-
tions, in the next section we derive a series expansion of the
integral transform~3.5!.

IV. SERIES EXPANSION FOR THE GREEN’S FUNCTION

As shown in the preceding section, the Green’s function
of the GPE can be presented as a product of two factors, the
first corresponding to the free space and the second related to
the spatial fluctuations«̃~R!. Substituting representation
~3.13! into Eq. ~3.5! gives

G~RuR0!5
i

2k Et0

`

dt expF i k2 ~t2t0!G
3g0~R,tuR0 ,t0!g«~R,tuR0 ,t0!. ~4.1!

Next, applying a formal identity

g«~R,tuR0 ,t0!5E
2`

`

ds d~s2t!g«~R,suR0 ,t0!,

~4.2!

representing thed function by its spectral expansion, and
interchanging integration order allows us to evaluate the in-
tegral overt. This leads to the expression

G~RuR0!5E
2`

`

ds g«~R,suR0 ,t0!

3
1

2p E
2`

`

dV exp@ i ~s2t02L !V#Fm~V!,

~4.3!

where the functionFm~V! is defined as
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Fm~V!5~ i /4!~kA122V/k/2pL !m/221exp~ iLV!

3Hm/221
~1! ~kA122V/kL! ~4.4!

andL5uR2R0u is the distance between two given points in
the m-dimensional configurational space. The function
exp(2 iLV)Fm~V! is the free-space Green’s function for the
wave with a wave number equal tokA122V/k. Alterna-
tively, we can write down Eq.~4.3! as

G~RuR0!5E
2`

`

ds fm~s!g«~R,t01L2suR0 ,t0!,

~4.5!

where the functionf m(s) is the inverse Fourier transform

f m~s!5
1

2p E
2`

`

dV exp~2 isV!Fm~V!. ~4.6!

Representing the functionFm~V! in Eq. ~4.3! by a Taylor
series in the neighborhood ofV50, we obtain the following
series expansion for the unknown propagator:

G~RuR0!5 (
n50

`
~2 i !n

n!
Fm

~n!~0!g«
~n!~R,t01LuR0 ,t0!.

~4.7!

The coefficientsF m
(n)~0! may be simply evaluated for the far

field approximation~2.5!, which allows us to present the
Green’s function as a product of two factors

G~RuR0!5G0~RuR0!G«~RuR0!, ~4.8!

i.e., in a form similar to Eq.~3.13!. The inhomogeneous
factorG«~RuR0! in the three-dimensional case is given by the
following series in derivatives of the GPE solution:

G«~RuR0!5g«~R,t01LuR0 ,t0!

1 i ~L/2k!g«9~R,t01LuR0 ,t0!

1~L/2k2!g«-~R,t01LuR0 ,t0!1••• . ~4.9!

Formally, the result is similar to the asymptotic expansion of
DeSanto’s integral transform, relating the solutions of the
Helmholtz equation and the SPE in an arbitrary two-
dimensional waveguide@30,31#. The principal difference is
that Eq.~4.9! contains the solution of the GPE instead of the
SPE.

Keeping only the first term in this series and neglecting all
the derivatives, we obtain

G«~RuR0!'g«~R,t01LuR0 ,t0!. ~4.10!

The applicability limits for this approximation may be evalu-
ated by applying Rytov’s complex phase approach, specifi-
cally representing theg« factor as

g«~R,t01LuR0 ,t0!5exp@w«~R,t01LuR0 ,t0!#,
~4.11!

wherew« is the component of the complex phase related to
the inhomogeneities effects. Then the series~4.9! reduces to
the multiplicative form

G«~RuR0!5g«~R,t01LuR0 ,t0!$11 i ~L/2k!@w«8
21w«9#

1~L/2k2!@w«8
313w«8w«91w«-#1•••%. ~4.12!

Obviously Eq.~4.10! is satisfied if all the additional terms in
Eq. ~4.12! are small. Physically it means that, for instance,
the changes of the complex phasew« of the GPE solution on
a distancel F5AL/k ~transverse size of the first Fresnel
zone! must be small compared to unity. This condition seems
to state rigid limitations for many deterministic problems,
but as we will see below it can be essentially relaxed for the
statistical moments of the wavefield propagating in random
media.

V. MEAN FIELD

In this section we shall investigate the abilities of the
proposed approach for obtaining an approximate solution for
the mean field, combining the series expansion for the
Green’s function and the path integration of the GPE. Ac-
cording to Eqs.~4.8! and ~4.9! the mean field radiated by a
point source is given by

^G~RuR0!&5G0~RuR0!$^g«~R,t01LuR0 ,t0!&

1 i ~L/2k!^g«9~R,t01LuR0 ,t0!&1•••%.

~5.1!

We assume that the fluctuations of the medium are described
by Gaussian statistics. Furthermore, let the random medium
be statistically homogeneous, i.e., let its correlation function

B«~R!5^«̃~R1!«̃~R2!& ~5.2!

depend only on the difference vectorR5R12R2. In this
case, using Eq.~3.14!, we find that the first term in expansion
~5.1! has the form

^g«~R,t01LuR0 ,t0!&

5S k

2p i D mN/2E dmNQN expS i k2 (
n51

N

Qn
2D

3expH 2
k2

8 E
0

L

dt1E
0

L

dt2F1~ t1 ,t2 ;QN!J ,
~5.3!

where the scattering functionF1~t1 ,t2 ;QNI ! is given by

F1~ t1 ,t2 ;QN!5B«S T1 (
n51

N

@cn~ t1!2cn~ t2!#QnD
~5.4!

and the vectorT is defined asT5R̄~t1!2R̄~t2!. For dimen-
sionless variables the first exponent in Eq.~5.3! contains the
parameterkL, which is much greater than unity in the far
field. Therefore, asymptotic evaluation of this integral, as
well as of similar integrals appearing further in the analysis
of the coherence function and higher-order statistical mo-
ments of the field, can be based upon application of Erdelyi’s
lemma@32#
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E
0

`

dx xn21 exp~ isxh! f ~x!

; (
n50

`
G@~n1n!/h#

n!h
~2 is!2~n1n!/h f ~n!(0), usu→`.

~5.5!

So the values of statistical moments of the field are pre-
scribed by the behavior of the corresponding integrand for
small values ofQNI . The leading term of the series expansion
for the statistically isotropic correlation functionB«(R), after
introducing new sum and difference variables

t85~1/2!~ t11t2!, t5t12t2 , ~5.6!

and integrating overt8, is given by

^ḡ«~R,t01LuR0 ,t0!&5expH 2
k2

4 E
0

L

dt~L2t !B«~ t !J .
~5.7!

This formula, originally obtained by Klyatskin and Tatarskii,
represents the simplest generalization of the Markov ap-
proximation applied to the standard parabolic equation@5#.
This term is purely real and describes the extinction of the
coherent part of the field.

As an example we shall perform the calculations for the
isotropic correlation function of a Gaussian form with char-
acteristic correlation scalel « :

B«~R!5s«
2 exp~2R2/ l «

2!. ~5.8!

The leading term in this case is given by

^ḡ«~R,t01LuR0 ,t0!&5exp~2aL !, ~5.9!

wherea is the extinction coefficient. If the normalized path
length l 5L/ l « is much greater than unity, we have

a'a05~Ap/8!k2l «s«
2. ~5.10!

In order to calculate the correction to~5.9! we present the
mean-field solution in the form

^g«~R,t01LuR0 ,t0!&

5^ḡ«~R,t01LuR0 ,t0!&

3S k

2p i D mN/2E dmNQNexpS i k2 (
n51

N

Qn
2D

3expH k28 E
0

L

dt1E
0

L

dt2F̃1~ t1 ,t2 ;QN!J , ~5.11!

where

F̃1~ t1 ,t2 ;QN!5F1~ t1 ,t2,0!2F1~ t1 ,t2 ;QN!. ~5.12!

For small values ofQNI we can expand the second exponent
in Eq. ~5.11! and represent the solution as

^g«~R,t01LuR0 ,t0!&5^ḡ«~R,t01LuR0 ,t0!&$11d1•••%.
~5.13!

Using the spectral representation of the correlation function

B«~R!5E dmK exp~ iR–K !F«~K !, ~5.14!

we obtain for the first correction termd in both two- and
three-dimensional cases the expression

d5
k2

8 E
0

L

dt1E
0

L

dt2E dmKF«~K !exp~ iT–K !

3@12exp~2 ihK2!#, ~5.15!

where

h~N!5
1

2k (
n51

N

@cn~ t1!2cn~ t2!#
2. ~5.16!

An exact summation forN→` leads to

h5~L/2k!~ t/L !~12t/L !, ~5.17!

wheret is defined by the second of Eqs.~5.6!. Slow conver-
gence to the exact result~N→`! is observed. The same con-
clusion was made in@21# regarding analogous asymptotic
expansions for the scintillation index evaluated in the frame-
work of the SPE. From the mathematical point of view this is
caused by the difference in the velocity of growth of the
exact functionh and its finite versionh(N). Unlike the ap-
proximation ofh by several first terms, the exact function is
linear for smallt. Such a distinction can provide not only a
quantitative difference in the solution but also dramatic
changes in its behavior. The sufficient number of the eigen-
functions is proportional to the value ofl . Therefore, an
adequate result may be obtained only by taking into account
a large number of eigenfunctions i.e., a high multiplicity of
backscattering events.

Since, besides that, the exact version ofh depends on the
difference coordinatet only, we can perform easily one more
integration with the result

d5
k2

4 E
0

L

dt~L2t !E dmKF«~K !exp~ iT–K !

3@12exp~2 ihK2!#. ~5.18!

Forh→0 we can approximate the last exponent in Eq.~5.18!
by the first two terms of its series expansion. Such a replace-
ment is correct only if the transverse size of the first Fresnel
zone is much smaller than the minimal scale of random in-
homogeneitiesl « , i.e., in the domain of applicability of geo-
metrical optics. In this cased is purely imaginary. Evidently,
the imaginary component ofd is related to the mean phase
shift.

For example, in three dimensions the correction term is
defined by
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d5 i ~p/2!kLE
0

`

dK K2$122~LK !22

3@12cos~LK !#%F«~K !. ~5.19!

The Gaussian correlation function~5.8! corresponds to the
spectral density of random inhomogeneities~m53!

F«~K !5~1/8p3/2!s«
2l «
3 exp~2 l «

2K2/4!. ~5.20!

Using this spectrum and performing the integration in Eq.
~5.19! leads to

d5 i 18kl $12l 22@12exp~2l 2!#%s«
2, ~5.21!

wherek5kl« is the normalized wave number.
For the opposite situation, whenL→` such asL/kl «

2→`
we obtain the expression

Im d5~p/2!k2LE
0

`

dK K lnu~2k1K !/~2k2K !uF«~K !,

~5.22!

which for the same Gaussian spectrum can be presented as

Im d5~Ap/8!c~k!k2l s«
2, ~5.23!

with the coefficient

c~k!5~2/p!k2E
0

`

dz zexp~2k2z2!lnu~11z!/~12z!u.

~5.24!

This result coincides exactly with the corresponding formula
obtained by solving the Dyson equation in the case of small-
scale inhomogeneities~k!1! @5#. Our derivation is based on
the requirementk/l !1, which is much weaker for large val-
ues ofl and allows us to analyze the behavior of Imd as a
function of k. Comparing Eq.~5.23! with the extinction
a0L5~Ap/8!k2l s«

2 , we note that the coefficientc~k! de-
fines approximately the value of mean phase shift normal-
ized to the extinction of the coherent part of the field.
Graphically the variationc~k! is shown in Fig. 1. We see that
the dependence has a resonant structure with the maximum
located atk;1.

Now we shall estimate the next term in the series expan-
sion ~5.1!. Taking into account only the leading term and
interchanging the order of statistical averaging and differen-
tiation, we find for the correction

d852 i ~122aL !exp~2aL !a/k. ~5.25!

This correction is equal to the extinction on the wavelength
scale. It is clear that this term can be significant only in the
geometrical optics regime. Finally, it is useful to note that
our estimates of all the correction terms give the sufficient
conditions of applicability of the classical formulation based

on the Markov approximation for the SPE and define more
precisely the necessary conditions obtained in@4,5#.

VI. COHERENCE FUNCTION
AND HIGHER-ORDER MOMENTS

Using the analysis of the mean field as a test for the ap-
proximations performed, we can now move to the evaluation
of the coherence function and higher-order statistical mo-
ments, which could be helpful for the description of the sta-
tistical properties of the field propagating in strongly inho-
mogeneous media. For the point source located at the origin
R050, the normalized~with free space factor removed! co-
herence function is defined as

g2~R1 ,R2!5^G«~R1uR0!G«* ~R2uR0!&. ~6.1!

Choosing the observation pointsR1 andR2 to be located on
a sphere centered on a point source location and using the
series expansion in the form of Eq.~4.9!, we can also write
down a similar expression for the coherence function

g2~R1 ,R2!5^g«~R1 ,t01LuR0 ,t0!g«* ~R2 ,t01LuR0 ,t0!&

1~L/2k!2^g«9~R1 ,t01LuR0 ,t0!

3g«9
* ~R2 ,t01LuR0 ,t0!&

1~L/k2!^g«~R1 ,t01LuR0 ,t0!

3g«-
* ~R2 ,t01LuR0 ,t0!&1••• , ~6.2!

whereL is the radius of the observation sphere. Similarly to
the case of the mean field, it can be shown that in the far field
kL@1, the coherence function is well defined by keeping
only the first term of the corresponding series

FIG. 1. Normalized correction to the mean field fork/l !1 in
three dimensions.
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expansion. Let us introduce the angleu between the obser-
vation points. Hence, performing averaging we find

g2~u,L !5~k/2p!mNE dmNPNI E dmNQNI

3expS ik(
n51

N

Pn•QnD expF2
k2

4 E
0

L

dt1

3E
0

L

dt2F2~ t1 ,t2 ;PNI ,QNI !G , ~6.3!

where the scattering functionF2 is defined by

F2~ t1 ,t2 ;PN,QN!5D«@R1~ t1!2R2~ t2!#

2
1

2(
j51

2

D«@Rj~ t1!2Rj~ t2!# ~6.4!

andD« is the structure function of the inhomogeneities@5#

D«~R1 ,R2!5^@ «̃~R1!2 «̃~R2!#
2&. ~6.5!

For a statistically homogeneous medium the structure func-
tion depends only on the difference vector and is related to
the correlation function as

D«~R!52@B«~0!2B«~R!#. ~6.6!

The vectors

Rj~ t !5R̄j~ t !1 (
n51

N

cn~ t !@Pn1~21! j21Qn/2#, j51,2

~6.7!

in Eq. ~6.4! define the trajectories connecting the source with
the corresponding observation point.

Applying Erdeyi’s lemma to Eq.~6.3!, we find that the
leading term is given by

ḡ2~u,L !5expF2
k2

4 E
0

L

dt1E
0

L

dt2F2~ t1 ,t2 ;0,0!G .
~6.8!

As the mean field, we can represent the coherence function
in the form of a series expansion

g2~u,L !5ḡ2~u,L !$11x1•••%, ~6.9!

where the first correctionx is presented by the expression

x5
k2

4 E
0

L

dt1E
0

L

dt2~k/2p!mNE dmNPNE dmNQN

3expS ik(
n51

N

Pn•QnD F̃2~ t1 ,t2 ;PN,QN!, ~6.10!

in which

F̃2~ t1 ,t2 ;PN,QN!5F2~ t1 ,t2 ;0,0!2F2~ t1 ,t2 ;PN;QN!.
~6.11!

Next, using the spectral form of the structure function

D«~R!52E dmK@12exp~ iR•K !#F«~K !, ~6.12!

we obtain

x5
k2

2 E
0

L

dt1E
0

L

dt2E dmKF«~K !$exp~ iT1•K !

3@12cos~hK2!#2exp~ iT2•K !@12cos~ h̃K2!#%,

~6.13!

where

T15R̄j~ t1!2R̄j~ t2!, T25R̄1~ t1!2R̄2~ t2!, ~6.14!

and

h̃~N!5
1

2k (
n51

N

@cn
2~ t1!2cn

2~ t2!#. ~6.15!

Performing exact summation in Eq.~6.15! for N→` leads to

h̃5~L/2k!~ t/L !~122t8/L !, ~6.16!

wheret and t8 are defined by Eqs.~5.6!.
Applying the same approximation, all higher-order statis-

tical moments of the field can be evaluated. For example, the
second-order intensity moment~fourth-order moment of the
field! is given as

g4~u,L !5S k

2p D 2mNE d4mNQ4 N

3expF i k2 (
n51

N

(
j51

4

~21! j21Qjn
2 G

3expF2
k2

4 E
0

L

dt1E
0

L

dt2F4~ t1 ,t2 ;Q4 N!G ,
~6.17!

where

F4~ t1 ,t2 ;Q4 N!5
1

2(j51

4

D«@Rj~ t1!2Rj~ t2!#1D«@R1~ t1!

2R3~ t2!#1D«@R2~ t1!2R4~ t2!#

2D«@R1~ t1!2R2~ t2!#2D«@R1~ t1!

2R4~ t2!#2D«@R2~ t1!2R3~ t2!#

2D«@R3~ t1!2R4~ t2!#, ~6.18!

and the trajectoriesRj (t) are defined as

Rj~ t !5R̄s~ t !1 (
n51

N

cn~ t !Qjn , j51,...,4. ~6.19!

Here s51 for j51,2 ands52 for j53,4. Using the appro-
priate manipulations, we can also apply a similar integration
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procedure for the fourth moment as well as for other higher-
order statistical moments. However, computations of the re-
sulting expressions in the general case require the use of
special versions of the Monte Carlo method@33–35#. We
hope that an analytical asymptotic solution can be obtained
in the strong fluctuations regime and we intend to analyze
this elsewhere in the future.

VII. TRANSITION TO LOCALIZATION

The normalized mean intensityi(L) can be obtained from
the coherence functiong2~u,L! for u50:

i~L !511x1••• , ~7.1!

where

x5
k2

2 E
0

L

dt1E
0

L

dt2E dmK F«~K !cos~T–K !

3@cos~ h̃K2!2cos~hK2!#. ~7.2!

We see that, according to Eqs.~7.1! and ~7.2!, i(L) is not
equal to unity in the general case. Obviously such behavior
can be recognized as a manifestation of the so-called weak
localization of classical waves@14#. We expect that investi-
gation of this asymptotic result can be helpful in the descrip-
tion of the transition from extended to localized states.

Introducing in Eq.~7.2! the new variables, defined by
~5.6!, and integrating over the difference coordinatet, we
obtain

x5k2E
0

L

dt~L2t !E dmK F«~K !cos~T–K !

3@~hK2!21 sin~hK2!2cos~hK2!#. ~7.3!

For the geometrical optics regime this expression in the
three-dimensional case reduces to

x52pE
0

`

dK K2$11~LK !21 sin~LK !24~LK !22

3@12cos~LK !#%Fe~K !. ~7.4!

Using the Gaussian spectrum~5.20!, we find that

x5 1
2 @122l 221~112l 22!exp~2l 2!#s«

2. ~7.5!

For the opposite situation whenL→` andL/kl «
2→` we

have the asymptotic formula

x54p2k3LE
2k

`

dK F«~K !. ~7.6!

Performing the integration in Eq.~7.6! with the same spec-
trum leads to

x5s~k!l s«
2, ~7.7!

where

s~k!5~p/2!k3 erfc~k!. ~7.8!

The dependence of the coefficients on the normalized wave
numberk is shown in Fig. 2. We see that there is a suffi-
ciently narrow window ofk for which an essential increase
of the correction can be observed. The wavelength in this
window is comparable to the correlation lengthl « and this is
the natural estimate in the framework of the wave localiza-
tion concept@14#.

VIII. SUMMARY AND CONCLUSIONS

In this paper, we have implemented the Feynman path-
integral approach to the problems of scalar wave propagation
in random media. For this purpose we have applied the
method originally proposed by Fock for the integration of
quantum-mechanical equations. The principal idea of the
method is based on the introduction of an additional
pseudotime variable and the transfer to a higher-dimensional
space in which the propagation process is described by a
generalized parabolic equation similar to the nonstationary
Schrödinger equation in quantum mechanics. The advantage
of such a transfer, which can be interpreted also as a version
of the embedding technique, is that the solution of the
parabolic-type equation can be presented in a path-integral
form. Such a representation, which also allows us to con-
struct the statistical moments of the field, may be considered
as a general solution of the problem, accounting for all the
wave-nature effects. The question, however, is how to trans-
form this general mathematical structure into a physically
tractable form. To do this we first represented the path inte-
gral by a limitN→` to a finiteN-dimensional integral over
the expansion coefficients of each virtual path into an eigen-
function series. The number of terms taken into account in
the series expansion has a clear physical interpretation as the
backscattering multiplicity. Furthermore, the representation
has the multiplicative form, namely, the form of products of
two factors, one of which is related to the homogeneous
medium, while the other reflects the effect of the inhomoge-
neities. Presenting the unknown propagatorG~RuR0! in a
similar multiplicative form, we restricted our attention to the
far-field approximation, for which the corresponding inho-
mogeneous factor is given by that of GPE.

FIG. 2. Normalized correction to the mean intensity fork/l !1
in three dimensions.
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As an example, the application of the proposed approach
is examined for the first statistical moments of the field ex-
cited by a point source in a statistically homogeneous Gauss-
ian random medium. In the Markov approximation for the
random fluctuations of the medium the result reduces to the
known solution of the standard parabolic equation. To obtain
a more correct estimate, we applied a perturbative technique,
presenting the solution as a sum of a leading term, which is
merely the SPE solution, and the correction term, which ac-
counts for the coherent backscattering effects. Analyzing the
results obtained as functions of the number of eigenfunc-
tions, we found that even for the simplest perturbative ap-
proach applied here, the results contain much more informa-
tion than the approaches accounting for a small number of
backscattering events.

The correction term obtained for the mean field coincides
exactly with the classical result of the Bourret approximation
for the Dyson equation but with a much weaker restriction
on the value of the wave numberk, which allows us to ana-
lyze the correction as a function ofk. We have shown that
the dependence has a resonant structure with the maximum
corresponding to a wavelength having the order of magni-
tude of the characteristic scale of the inhomogeneous me-
dium.

A similar analysis may also be used for the asymptotic

evaluation of the coherence function and higher-order mo-
ments. Here we have presented quite general expressions for
both second and fourth moments of the field. In the case of
the second-order coherence function a simple asymptotic for-
mula was derived. The main feature of the result obtained is
that in the far field the normalized mean intensity is not equal
to unity. We connect such behavior with the localization
phenomenon, specifically with the asymptotic transition from
extended to localized states. In fact, as was shown, the de-
pendence of the correction term on the wave number has a
quite narrow peak centered at the typical spatial frequency in
the spectral density of the medium. This dependence does
not differ significantly from that obtained in classical works
concerning wave localization in discrete random media@14#.

Hence the technique applied in our work allows us to
account for the coherent backscattering effects and to evalu-
ate the wave correction terms for all statistical moments of
the field. On the other hand, the corrections obtained permit
us to establish the sufficient condition of applicability of the
standard parabolic equation in various situations. We also
hope that the limitations of the approach, due to the asymp-
totic procedures used, could be essentially relaxed by appli-
cation of direct numerical techniques, particularly Monte
Carlo methods, to evaluation of the functional integrals.
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